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TWO-DIMENSIONAL EFFECTS WITH THE FLOW OF A REACTIVE LIQUID 

WITH PROPERTIES VARYING WITH THE DEPTH OF THE CONVERSION 

D. A. Vaganov UDC 532,542:660.095~ 

During the course of chemical conversions, the mechanical properties of a reacting liq- 
uid can vary. Thus, pol~merization processes are usually accompanied by a considerable 
increase in the viscosity. This leads to the appearance of specific hydrodynamic effects. 
Some of these are considered in the present article using the example of the simplest two- 
dimensional problem. 

w The article considers the steady-state laminar flow of a reactive Newtonian liquid 
in a tube. The viscosity V and the density p of the liquid, during the course of chemical 
conversions, vary from the values ~ = ~o and p = Po to the values ~ = ~i and p = pl for 
total conversion. 

We shall assume that the temperature of the liquid is constant and that the effect of 
diffusion can be neglected. In this case, at a given point, the depth of the conversion and 
the mechanical properties of the liquid are determined only by the time t at which the liquid 
reaches the given point. The dependences ~ = ~(t) and p = p(t) are the same as in the case 
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of a motionless liquid and can therefore be regarded as known. 

We assume that the change in the properties of the liquid with time can be approximated 
by the jumpwise dependence 

~t ~ ~to, p ~ 9o for t<~  to, 

---- ~h, P =: Pl for t~ to. (i.i) 

This assumption conserves the principal features of the phenomenon under consideration 
and, at the same time, assures considerable mathematical simplifications. With this assump- 
tion, the spatial distribution of the mechanical properties of the liquid reduces to the 
existence of two regions, in each of which these properties are constant. The region in 
which the properties of the liquid do not differ from the starting values narrows with in- 
creasing distance from the start of the tube; the time in which the liquid reaches points ly- 
ing on this boundary is equal to to. Within the framework of the present work, the time to 
can. be interpreted as an induction period, after which there is an instantaneous total chem- 
ical conversion. Therefore, in what follows, the elements of the liquid whose mechanical 
properties coincide with the properties of the liquid with total conversion will be arbitrar- 
ily called reacted (or reaction products), while elements of the liquid whose properties do 
not differ from the starting properties will be called unreacted, and the interface between 
them will be called the front of the reaction. 

We introduce the following notation: V and W are, respectively, the axial and radial 
components of the velocity; U is the volumetric flow rate of the starting liquid, referred 
to unit area of the cross section; r is the relative distance from the axis of the tube; z 
is the distance from the start of the tube; P is the difference between the pressure at the 
inlet to the tube and the pressure at a given point; Po is the pressure drop between the in- 
let to and the outlet from the tube; zo and ro are the length and the radius of the tube, 
respectively. 

Strictly speaking, the flow of the liquid should be considered not only in the tube it- 
self, but before the inlet to and before the outlet from the tube. To avoid this, we shall 
assume that the distance I e at which the perturbations arising at the inlet to the tube are 
damped is considerably less than the distance l, at which the effect of a change in the 
properties of the liquid (l, ~ Uto) becomes appreciable and that the pressure drop across 
the tube can be neglected. 

In addition, we assume that the effect of inertial forces is small, that the velocity 
of the flow at any given point is directed practically along the axis of the tube (W << V), 
and that any appreciable changes in the picture of the flow take place at distances which 
so far exceed the width of the flow that in any given cross section changes in quantities 
taking place along the length of the tube can be neglected. 

The greater the mass flow rate of the liquid, the greater the velocity of its motion 
(V ~ U). At the same time, the displacement of the liquid in a radial direction, arising 
as a result of a change in the mechanical properties of the liquid, is not connected direct- 
ly with the value of the mass flow rate. Other conditions being equal, the value of the 
radial component of the velocity is determined by the width of the tube and by the rapidity 
of the change in the properties of the liquid (W ~ ro/to). Consequently, 

W / V  ,-~ s = ~ / U t  o. ( 1 . 2 )  

The  e f f e c t  o f  i n e r t i a l  f o r c e s  i n  t h e  g i v e n  c a s e  i s  d e t e r m i n e d  b y  t h e  q u a n t i t y  

p Wro/~ ,-r R e .  = ro(%/Q)/(~o/Po), ( 1 . 3 )  

which is an analog of the Reynolds number for radial displacement of the liquid, and, since 
for I e << l,, in accordance with Ill, 

2 
leNroPoU[~o,  then le / l ,  N R e , ,  

T h u s ,  t h e  a s s u m p t i o n s  made mean t h a t  t h e  d i s c u s s i o n  i s  l i m i t e d  t o  t h e  p r i n c i p a l  t e r m  
o f  t h e  a s y m p t o t i c  c u r v e  a s  

e - ~ O a n d R e ,  - + 0 .  ( 1 . 4 )  

The degree of smallness of the values of e and Re, required here in practice depends 
on the value of the relative change in the properties of the liquid and can be established 
from a comparison of the approximate and exact solutions. 
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In the approximation under consideration, the flow of the liquid in a tube of given 
length will not differ from the flow of a liquid in the corresponding section of a longer 
tube. A change in the mass flow rate of the liquid leads, essentially, only to a correspond- 
ing extension or compression of the picture of the flow. Therefore, in the solution of the 
problem, it is natural not to limit the discussion to any previously determined value of the 
length of the tube. Formally, this reduces to the use of dimensionless variables, not de- 
pending on zo. Such variables are the quantities 

V = W/  P = P/ 8 tt__q.o U~ t ~ ~ = zlUto, - '  ' o ) , ,  (l.5) 

which are, respectively, the axial and radial components of the velocity, the pressure, and 
the distance from the start of the tube. Here the introduction of a numerical factor into 
the definition of the dimensionless pressure brings the expression of the Poiseuille law to 
the simpler form dp/d~ = I. 

In these variables, the equations of motion of a viscous Newtonian liquid [2] assume 
the form 

au 
? Be.  { v "~ + w "~r } : --~ { 8P + e~ ( + v  -- v' ) ( ' ~  + 

a e- ( T  v '~ [ o~ 
= . 

Jr I 0 e2~2' o aw' 2w, --l-~"v -fT-l--e -~')), (1.7)  ~'r rw "4- L r Or rv "~r -- r -''y'~" 

where y = p/po; ~ = p/~o; ~' = p'/po; p' is the coefficient of the volumetric viscosity; and 
the quantities e and Re, are defined in (1.2) and (1.3), respectively. 

Passing to the limit in (1.4), from (1.7) we obtain 3p/~r = 0, so that p = p(~), and 
from (1.6) it follows that 

1 0 m'~r + 8 d p l d ~ = O .  (1.8) 
r Or 

We assume that, in the cross section ~ = const, the reacted liquid corresponds to r ~ R, 
i.e., in this cross section 

= ~0, P---- P0 for r<R, 

= ~z, P=Pl for r~R, R =R(~). 

Then integrating (1.8) with respect to r and assuming that v = 0 for r = i and ~v/~r = 0 
for r -- 0, for the distribution of the axial component of the velocity we will have 

1+~ {li_r~+~(R~--r2) for r<R, P.,--Po 
u ~ =  r' for r~>R, = P0 ' 

The equation of continuity in the variables (1.5) has the form 

I a a 
7 ~- (Twn) + ~ (yv) = 0, 

and the dimensionless stream function can be introduced: 

I 

~b (~, r) = S ? (~, r') v (~, r') 2r'dr', 

(1.9) 

(l.10) 

i 0 0  



in terms of which the components of the velocity are expressed using the relationships 

w----~ , v-- 27r -~r ~" (i.!i) 

Substituting (1.9) into (i.i0), for the dimensionless stream function $ we obtain 

~t+= J(t--r2)2§247 ~ for r < ~ ,  
= ( ( l + f i ) ( i - r ~ )  ~ fo~ r ~ > R ,  (1.12) 

Po 

The mass flow rate of the liquid through any given cross section is exactly the same, 
and ~ E 1 for r = 0. Therefore, for the gradient of the pressure, from (1.12) it follows 

that 

dp/d~ ~ (l § a)/[i § ~ § ~(i -- R~)2]. (i.13) 

The expressions given permit a complete determination of the characteristic curve of 
the flow in accordance with the dependence R = R(~). By the same token, solution of the prob- 
lem in the approximation under consideration reduces to finding the position of the reaction 
front. 

w In finding the position of the reaction front, it is convenient to introduce into 
the discussion the fraction ~ = o(~), which is the reacted liquid in the total mass flow of 
liquid through a given cross section, 

1 

a(~)= t' ~I([ ,r)  v ( ~ , r ) d r ~ - ~ ( [ , R ( [ ) )  �9 (2.1) 
Blip,) 

From (2.1), taking account of (1.12) and (1.13), we have 

-- -- ~2.2~ 

and since there is a one-to-one connection between the values of ~ and R, finding the depen- 
dence ~ = ~(~) is equivalent to finding the dependence R = R(~). 

In accordance with (i.i), the position of the reaction front is determined by the con- 
dition that the time in which the elements of the liquid reach the front is equal to to. 
Since the time dt in which an element of the liquid, moving along the flow line ~ = const, 
traverses the distance between cross sections corresponding to the values of ~ and ~ + do 
satisfies the relationship 

da = (da/d~) v(a, ~)dt/to, 

then for finding do/d~ there follows the integral equation 

,o 

0 

=i,0~<i. (2.3) 

Here v(o, 4) denotes the value of the axial component of the velocity at the point cor- 
responding to the given values of o and 4. Substituting into (1.9) the distance from the 
axis of the tube to the given line of flow, found from (1.12), as a result, taking account 
of (1.13), (2.2), for this value of the axial component of the velocity we obtain 

~-~ = [~' (I+8)~-8~ for ~>~, 6 ==+=~+~. 

Using (2.4), the integral equation (2.3) can be represented in the form 

~[ d~ 1 dl i~ =~, (li~) (i -R~)-~ V~+6>~-6~ 
0 

(2.4) 

(2.5) 
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from which it can be seen that, if the expression standing in square brackets in 

set equal to a constant, then, since 

1 
d r  = dx = arctg (~8 )  

o V(I+6)*--8~ o V(I+6)-8~ V$ ' 

(2.5) is 

the left-hand part of the integral equation will not depend on the value of ~. 

Consequently, the solution of the integral equation (2.3) is 

da = (1 + B% arctg (-V'~) (1 

and, going back from the variable o to the variable R, for finding the position of the reac- 

tion front wehave 

dR' amtg (]/~). [I + aR" + ~ (i - -  Rl)Sl s. (2.6) 

Integrating (2.6), we find the coordinates of the reaction front and from (i.13), (2.6) we de- 
termine the change in the pressure along the length of the tube. 

Setting x = (i -- R2)/(I + aR2), the coordinates of the reaction front can be represented 

parametrically in the form 

arctg (z 3/~) t + a x  x3/~ ~ /  i - - z  (2.7) 
4= arr162 + l + ~ x ~ a r J g [ V ~  ' n =  t + ~ '  

and, with ~ S ~,, where 

t V 8  ( 2 . 8 )  
~, -- t Jr ~ arctg (V5--) 

is the maximal extension of the reaction front along the length of the tube, for the differ- 
ence in the pressures at the inlet to the tube and at the given point we will have 

5q-2axq-38x~/ t+ax~ ~ xV~ 3 arctg(z'V'6) t ~ [ 
P = 4 l ~ ]  arctg (~) nu ~- a-~ctg(-~--~, ~ /- -6- i arctg~z r~) j I" (2.9) 

The parameter x is the ratio of the value of the axial component of the velocity at the 
reaction front to the velocity of the flow of the liquid at the center of the tube 

I (r , )  
"~-ui-4-(zz = ~ i _ _ r  �9 

[xi--R~ 

for r < B ,  

for r>/R. 

At the start of the tube, the reaction front is in contact with the walls, and the parameter 
x is equal to zero. With increasing distance from the start of the tube, the value of x 
rises and, with ~ = ~,, where the reaction front reaches the center of the tube, becomes equal 

to unity. 

The fraction of the cross section occupied by reacted liquid (i- R 2) and the fractions 
a and o' which represent the reacted liquid, respectively, in the total mass flow rate and 
the volumetric mass flow rate of the liquid through the given cross section, are connected 

with the parameter x by the relationships 

t + 8  x~ o' R ~ o= I~ , =~x2, i__ _____~xx, (2.10) 

while, for the distribution of the radial component of the velocity, from (I.ii) it follows 

that 

109. 



I ( a - - 6 x )  for r > R ,  

2 3/6 r z 1 -- x [ rw aretg (V6)  R ~ (t -t- = ~x)~ (1 + a)([~ + ~ x ) z  - (2 .11)  

t ' - ( l -  z ) ( ~ - ~ x ) ( l -  ~ ) 1  fo~ r < R .  

For 5 > ~,, there is the usual Poiseuille flow of the reacted liquid and 

p = p ,  + [(1 + a) / ( l  + ~)](~ - -  ~,), p ,  = p(~, ) .  

Depending on whether the density of the liquid decreases or increases during the course of 
the chemical conversions, the velocity of the flow for 5 ~ ~, will be greater or less than 
at the start of the tube~ However, the distance from the axis of the tube up to a given 
line of flow for 5 ~ 5, is the same as at the start. 

The behavior of the lines of flow for 5 < 5,, in accordance with (2.11), can be dif- 
ferent. These differences are shown in Fig. i, where the flow lines correspond to the solid 
lines, while the dashed lines show the position of the reaction front and the geometric !o- 
cation of the points at which the radial component of the velocity is equal to zero. The 
values of the quantities 6 and ~ with which one case or another is realized are shown in Fig. 
2, where the points lying below the straight line ~ = ~ correspond to an increase in the 
viscosity with the depth of the conversion. Since the mass flow rate of the liquid is con- 
stant, an increase in the velocity leads to a situation in which the velocity of the flow of 
unreacted liquid increases and the flow lines extend to the axis of the tube. If the vis- 
cosity decreases, the velocities of the flow of unreacted liquid equalize out, and the flow 
lines diverge toward the walls. 

The values of the parameter x distinguished in Fig. 1 are x~ = a/~, xB =--B/f, and the 
value of xo satisfying the equation a6x 2 + 2~x -- a = 0. Substituting these values into (2.7), 
it can be shown that, in cases a and d, 5(xo) = (i/2) • 5(xa), and, in the cases b and e, 
~(xo) = (1/2) [5(x B) + ~,]. In the cross section corresponding to x = xo, the velocity of 
the flow at the center of the tube is equal to v = a/oxo. For a > 0, the value of the veloc- 
ity is maximal, and for a < 0, minimal. 

If the properties of the liquid do not vary (~ = B = 0), then w E 0, ~ = (i/4)~ 2, ! -- 
R 2 = x = (1/2)5, 5, = 2. 

For ~: << ~o, the reacted liquid plays the role of a lubricant. As a result, at the 
greater part of the reaction front, the unreacted liquid moves with a practically constant 
velocity v = i; the value of ~, tends toward unity. 

When the viscosity of the reacted liquid significantly exceeds the initial (a >> I), 
from (2.8) for the extended reaction front it follows that 

~, ~ (2In) 1 / '7 ,  S = (1 + a)l( t  + ~) = (FJp~)l(volpo). 

In this case, the flow of unreacted liquid is compressed into a narrow jet, breaking through 
the almost motionless layer of unreacted liquid. In the section of the formation of the jet, 
there is paractically no motion of the reaction productS, and their presence at the wall 
leads to a situation in which the starting liquid moves as in a tube of variable cross sec- 
tion. In accordance with this, from (1.3) it follows that dp/d~R -4, and passing to the 
limit a § = in (2.7), (2.9), (2.10) with a fixed value of ~ = ax, for this section we obtain 

R ~ ~ t/(1 + ~), ~ ~ ~ l I ,  ~ ,~ (2/~ VT)~(~ § 2), p ~ N~(~ + 2) ~ § 2~(~ -~- 2)]/~ 17-7. 

The corresponding limiting transitions show that for 1-I/2 << 5 S 5, the resistance to 
motion connected with the flow of the reacted liquid, which in each individual cross sec- 
tion is practically unaffected by the presence of a narrow jet of unreacted liquid at the 

center of the tube, 

v . ~  [2~I(i + ~ ) ] ( l - - r  ~) for r ~ R , ' ~  O, d p / d ~ I ~ .  

The amount of reacted liquid forming in unit length of the tube does not depend on the mass 
flow rate and is constant along the length of the tube 

tod(oU)/dz ~ dq/d~ ~ ~/2 ~#']-; 

as a result, in the greater part of the extension of the front of the reaction 
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To find the dependence between the limiting pressure and the mass flow rate of the liq- 
we must go over from the variables (1.5) to the variables 

•  8 r~ ~ o = U  

o 

(2.12) 

the scale values of which are connected, not with the value of the mass flow rate, but with 
the length of the tube. Here ~ is the dimensionless pressure over the length of the tube; 

is the dimensionless mass flow rate of the liquid; and, if the density of the liquid does 
not vary, then e = m-1 is the dimensionless mean residence time of the liquid in the tube. 

A comparison of (2.12) and (1.5) shows that 

• = o ~ ( 0 ) ,  p(O) ~ - p ( ~ )  for ~ = O. ( 2 . 1 3 )  

The relationship (2.13) establishes a connection between the above-discussed change in 
the characteristics of the flow along the length of the tube and their dependence on the 
mass flow rate and the pressure drop. 

The behavior of the system in the case where the viscosity of the reacted liquid is 
considerably greater than the starting viscosity (Fig. 3) is of great interest. The differ- 
ence in the velocities of the motion of the reacted and unreacted liquid in this case is so 
great that, to achieve complete conversion, the mean residence time of the liquid in the tube 
must considerably exceed the induction period to. The maximal mass flow rate and pressure 
drop, with which there is still complete conversion at the outlet from the tube, are equal to 
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o,-----o, ....~--~, x,----r 

With a mass flow rate greater than o,, the jet of unreacted liquid breaks through the whole 
tube, while the fraction of reacted liquid drops. However, so long as 0 >> I -z/2, i.e., 
right up to values of the residence time considerably less than the induction period, the 
amount of reacted liquid coming from the tube and the pressure drop practically do not vary: 

o'------- ~o----- o , ,  ~/~,  ~__ I. 

If the motion of the liquid takes place with a given pressure drop, then with an increase 
in ~ with a transition through x/~, = i, the mass flow rate of the liquid rises, and the 
mean residence time becomes somewhat less than the induction period; the motion of the re- 
acted liquid practically ceases. The pressure drop for ~/• > i is connected with the mass 
flow rate and the characteristics of the flow at the exit from the tube by the relationships 

while for x/• < 1 

~ 1 O' Z ~ •  + (0'--~- ~'~7-t-Ra' • ~ " ~ - L  o .  

~2 

~, O, 0 2 " 

The assumptions made with the solution of the hydrodynamic problem do not permit, in 
the present work, a discussion of the critical phenomena connected with the ambiguous char- 
acter of the dependence of the mass flow rate of the liquid on the pressure drop [3]. 

The author thanks V. G. Abramov, A. M. Stolin, and N. G. Samoi!enko for their valuable 
advice and evaluation. 
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